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A Microscopic Model of Interface 
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A microscopic model for a solid-on-solid type of interface under the influence of 
an external field is introduced. It is proven that in equilibrium the macroscopic 
profile satisfies a partial differential equation which is (up to a transformation) 
the stationary Burgers equation. The study is based on the structure of the 
invariant measures for a related asymmetric simple exclusion process. 
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1. I N T R O D U C T I O N  

In recent years there has been considerable interest in surfaces growing 
th rough  deposit ion and in growth  patterns in cluster solidification fronts. 
In this paper  we present a very simple stochastic model  which describes the 
time evolution of an interface, of  type "solid on solid," under  the influence 
of  an external field in a strip of  width L. In  a properly chosen cont inuum 
limit (lattice spacing 1/L, L ---, oe), and in equilibrium, we obtain that  the 
macroscopic  height h( . )  of the interface satisfies the equat ion 

~2h 1 F(~h~2 1 - Z - 1 ( 1 . 1 a )  

h ( 0 ) =  h(1) = 0  (1.1b) 

Equat ion  (1.1) is related to the s tat ionary Burgers equat ion by the trans- 
format ion 

h' = p  (1.2) 
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The Burgers equation describes also the dynamics of one-dimensional, 
weakly asymmetric lattice gases on a macroscopic scale. We refer to ref. 1 
for a detailed analysis. Our study is based on a simple relationship at the 
microscopic level between the interface model and a lattice gas (simple 
exclusion process). For this model we prove, in a suitable scaling, that the 
stationary measure has on the global scale the density p of particles and is 
on a local scale homogeneous and independent. 

The relationship between lattice gases and interfaces has also been 
studied by Gallavotti ~6) for the Ising model in a box. Rost (1~ related the 
totally asymmetric simple exclusion process with the boundary of an Eden 
model ~2) for a time-dependent situation. For a review of the symmetric 
solid-on-solid model see ref. 5. Kardar et al. <v) have studied ballistic deposi- 
tion on surfaces. They noted and used the relationship (1.2) to study the 
Burgers equation with external random force. 

In Section 2 we introduce the interface model, the asymmetric simple 
exclusion, and the isomorphism relating them. Then we justify the rescaling 
of the drift as a function of L (weak asymmetry), and state our results: 
Theorem 1 contains the statements of local homogeneity and independence 
for the stationary measure of the simple exclusion model. Theorem 2 states 
the convergence to the macroscopic profile of the interface model in equi- 
librium. The proofs are given in Section 3. Finally, in Section 4 we make a 
few comments on the fluctuations around the deterministic limit of 
Theorem 1. 

2. DEFINITION OF THE MODEL.  STATEMENT OF 
THE RESULTS 

Definition 2.1. The interface model. Let L~> 1 be an integer and 
A(L) dej {x~7/: O<~x<~L}. The interface model we study is the Markov 

(4,),>/o taking values on process L 

~L d~j { ~ZA~2L): ~(0)= ~(2L)=0, I~(x)-- r  1 )1 = 1, for 0 ~< x ~< 2L - 1 } 

and whose generator 5r L is given by 

~ L f ( ~ )  = ~ {pt{~(x__l)=~(x+l)<~(X)}[f(~x.-)__f(~)] 
I~<x~<2L--1 

+ql{r162162 (2.1) 

where 1 { .  } is the characteristic function of the set {. }, f is a real function 
defined on 5fL, 0 < p < 1, q = 1 - p ,  a n d  ~x, , Cx,+ are given by 

~'~(y) if y ~ x  (2.2) 
~x'+-(Y)=l~(y)+2 if y = x  
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The generator 5f~ governs an interface dynamics which can be infor- 
mally described as follows: the height of the interface at a given site, say x, 
can change only if heights at its nearest neighbor sites are both equal. In 
this case, with rate q, it changes by two units up if ~(x)<  ~ ( x - 1 ) ,  and 
with irate p, it changes by two units down if r > ~ ( x -  1). By symmetry 
it suffices to consider the case p ~> 1/2. 

De f i n i t i on  2.2. The asymmetric simple exclusion model. Let 
L (tl,),>/o be the Markov process with state space ~ L =  {t/E {0, l }  A(2L+I)" 

t / (0 )= t / (2L+ 1 )=  1} and generator LPe L given by (1/2~<p< 1, q =  l - p )  

~eLf(t/) = ~ {Prl(x)[1 -- t l (x  + 1)][ f ( tL , ,x+l) - -  f ( t l ) ]  
l<~x<~2L 

+ q t t ( x ) [ 1 - ~ t ( x - 1 ) ] [ f ( t  t . . . .  1 ) - f ( t / ) ] }  (2.3) 

for f :  ~L -~ N and where t/x" y is the configuration given by 

t/(z) if z C x ,  y 

tlx, y(z) = ~t / (x)  if .z = y (2.4) 

[~/ (y)  if z = x  

for l~<x, y<~2L. 
We say that site x is empty if q ( x ) = 0  and that there is one particle 

at x if t / (x)= 1. Informally, the generator 5e~ describes the motion of 
particles with the following behavior. Each particle jumps with rate p 
(respectively q) to its nearest right (left) unoccupied neighbor (jumps to 
occupied sites are forbidden). The condition that sites 0 and 2L + 1 are 
always occupied with particles that do not move can be interpreted as 
reflecting boundary conditions. This condition implies that the total 
current is identically zero. The extremal invariant measures for t/~ form a 
family #,,L 0~<n ~< 2L, indexed by the number of particles in {1,..., 2L}, 
which is a conserved quantity. Under # r  the occupation numbers at 
distinct sites are correlated. Nevertheless, it is easy to check that the 

L 0 < c~ < + o% with marginals given by product measures v~, 

v~(q(x)= 1 ) -  c~(P/q)X 1 <<.x<~ZL (2.5) 
1 + c~(p/q) x' 

are reversible for the generator ~ (see also ref. 8). These are not extremal, 
but defining A, = {t/: ~2 2L x= ~ q(x) = n}, the following is true: 

# ~ =  v~(.JA,) for any ~ > 0  
2L (2.6) 

L I )  ~ L L = v , , ( A o ) ~  
n=O 
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To avoid heavy notation, we omit the superscript L on (t/L), #L, etc., 
when no confusion arises. In the particular case n = L we write/2 L ( =  #L). 

Correspondence between the interface model and the asymmetric 
exclusion process. Let ~L {t/E~JL: 2L = ~,x=oq(x)=L} and let H: ~--~t/ 
be the bijection between ~/~ and o~/~ defined by 

t/(x) = [1 + ~ ( x ) -  r  1)] /2 

t/(o) = t/(2L + 1) = 1 

for 1 <~x<<,2L 
(2.7a) 

Thus, H l(t /)= ~ is defined by 

~(x)= i [2 t / (y ) - - l ] ,  for l~<x~<2L 
y = l  

~(0) -- 0 and ~(2L) = 0 
(2.7b) 

From the previous definitions we conclude the following result. 

Remark. For any t / ~ L ,  if we let (t/t),~ o be any regular version of 
the exclusion process (according to Definition2.3), with t/o=t/, then 
~ = H - l ( t / t ) ,  t~>0, describes a regular version of the interface model 
(same p) defined by Definition 2.1, with ~o--H-~(t/),  and conversely. 

From the above remark it follows that the unique invariant proba- 
bility for (~L) is fi/~ given by 

IlL(A) =/2L{t/~ ~L: H-lt /~A 

for A __c 2~L. 
Up to now we have taken L and p fixed. Our interest is to study the 

behavior of fiL (or /iL) as L ~  oo. We take r=x/(2L), 0~<r~< 1, and 
p = p(L) = 1/2 + O/4L for some 0 r 0 in order to obtain a nontrivial limit, 
as will be explained later. We prove the following result for the asymmetric 
simple exclusion process. 

T h e o r e m  1. For L/> 2, integer, let (t/t) be the exclusion process on 
~/_ defined according to Definition 2.3 with p = p(L) = 1/2 + O/4L for some 
0 5 0  fixed. Let fiL ( =  #~) be its unique invariant probability. For any 
r~ (0, i)  and any f cylinder function on {0, 1} z, 

lim ilL(f" ZE2,/q) = flp(r)(f) (2.8) 
L ~ o o  

Here tip is the Bernoulli measure on {0, 1 }z with parameter p, i.e., tip is the 
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product probability on {0, 1)z, so that ~pOl(X)= 1 ) = p  for all integer x; 
the parameter p(r) is given by 

exp O(2r-  1) 
= 

1 + exp 0(2r - 1 ) 

and satisfies 

dp 2 0 p ( 1 - p ) ,  0 < r <  1 (2.9a) 
dr 

p(O)= l - p ( 1 ) ;  p ( r ) d r = ~  (2.9b) 

rx is the translation (by x) operator, i.e., rx(~/)(y)= ~/(x + y) for - x  <~ y ~< 
L -  x, and [2rL] is the integer part of 2rL. 

Remark. The Burgers equation reads 

c3p . Oj 
= ~  

with 

Op 
j =  - ~ r + 2 0 p ( 1 - p )  

By (2.9a), p satisfies the stationary Burgers equation with zero current. 
We give now a heuristics for the choice of p and for Eq. (2.9). We 

prove that, in the above limit, kTL is close to v~(c) with c~ = u(L) chosen as 
to give total particle density equal to 1/2. That is, c~ must satisfy the 
equation 

1 (2x~__L )~-~-~ 2 L ~ ( p / q ) x l  (2.10) 
2---L v~ rl(x) = Z 1 + or(p/q) x 2 

1 x = l  

We prove below that (2.10) is equivalent to 

v~,(r/(1 ) = 1 ) = v~(r/(2L) = O) (2.1i 

which implies 

and 

Ot = (p/q)--(C + 1/2) (2.12) 

(p/q) [ 2 r L ]  --  ( L  -+- 1/2)  

v~(q([2rL])) = 1 + (p/q)E2rL~ -(L + 1/2) (2.13) 

822[55/3-4-9* 
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For p fixed this will tend to zero if r < 1/2, and to one if r > 1/2. In order 
to obtain a nontrivial limit, one takes (0 > 0 and L big enough) 

1 0 
p = p(L) = ~ ~ 4L (2.14) 

In this case 

p ( r )=  lira 
L ~  d-oo 

e O (  2r  - 1) 

v~(L)(q([2rL]))-- 1 + e ~ 1) (2.15) 

which is the nonconstant solution of Eq. (2.9). 

Proof of the Equivalence between (2. 10) and (2. 11). Notice that, 
since v~ is reversible, i.e., 

pv~(~(x) = 1)[1 - v ~ ( ~ ( x  + 1 ) =  1)3 = qv~(~(x + 1 ) =  1)[1 - v~( . (x)  = 1))3 

then (2.11) implies that v=(tl(X ) = 1) = v=(q(2L - x) = 0) for all x. Summing 
up the above equalities, we get (2.10). On the other hand, suppose that 
(2.11) is false and (say) V~Ol(1)=l)>v~(tl(2L)=O); then reversibility 
implies that v=(q(x)= 1)> v ~ ( q ( 2 L - x ) = 0 )  for all x, which contradicts 
(2.10). 

From Theorem 1, and taking account of Eq. (2.7), we obtain the 
following result about the macroscopic profile of the interface model in 
equilibrium. 

Theorem 2. For L~>2, integer, let/~L be the invariant measure for 
the interface model (~,) on 5F/~ with p = p ( L ) =  1/2+0/4L, for some 
0e(0,  4] fixed (cf. Definition 2.1). Then, for any re (0 ,  1) and any 6 > 0  

lim F t L I I ~ L ( E 2 L r ] ) - R ( r  ) > 6 ] = 0  (2.16) 
L ~  +oo  

where R(.) is the unique nonconstant solution of 

R"(r)  = 0 { 1 -  ER'(r)]2},  R(0)  = 0 = R(1) (2.17) 

3. P R O O F S  OF T H E  R E S U L T S  

Theorem 2 follows from Theorem 1 as an easy consequence of relation 
(2.7). In fact from Eq. (2.8) in Theorem 1 we easily obtain (2.16) with 
R(r) = ~ [2p(u) -- 1 ] du, where p(-) is the solution of Eq. (2.9). 
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Proposition 3.1. Let /ic and p(-) be as in Theorem 1. For k >i 1, 
let x~= [r~2L] ~ {1 ..... 2L}, i =  1,..., k, where [-]  is the integer part. Then 

(Oi Oi lim FtL rl(X , -- p ( r , )  = 0  (3.1) 
L ~ + o o  i i =  

Pro of. Let us recall that for any e ~ (0, + oo) 

x = 1 / ~ ( X )  = 

where v~ is the (reversible) product measure given by Eq. (2.5). From the 
fact of v~ being product we obtain 

fiL ( ~ q(Xi)~ Vc~(~x~exl ...... k q ( x ) = L - k )  l-[ '=~ v~,Ol(x~)) (3.2) 
\ ~  J , =  v~(Z ~(x) = L) 

where the sums run over x e  {1 ..... 2L}. Now choosing ~=c~(L) such that 
Eq. (2.10) holds, we have, according to Eq. (2.15), that 

lim v ~ ( t l ( x ~ ) ) = P ( r i )  (3.3) 
Z ~ + o o  

From Eqs. (3.2) and (3.3) the proposition will follow once we prove 
that 

lim 
L- +~ v~(Z~=, n(x) = L) 

v~(Y~xex~ ...... k rl(x) = L - k )  - v t ~ 2 L  ~Z. ,x  = 1 rl(x) = L )  
- 0  (3.4) 

Using Eq. (2.10) and the local central limit theorem (ref. 9, Theorem 5, 
p. 197), we have 

X 5~ Xl  ,..., Xk x~t=Xh...,Xk 

- ~ e x p  - 2 2 x ~ ,  ...... ~v~(tl(x))[1-v~(~(x))] + 0  

(3.5) 

and similarly for k 0. Noticing that ( l /L)  2L = Z x = l  v ~ ( ~ ( x ) ) E 1  - v ~ ( ~ ( x ) ) ]  
tends to [ l p ( r ) [ 1 - p ( r ) ] d r ~ ( O ,  +oo), we obtain that there exists a 
constant C~ (0, +oo) so that the lhs quotient in the Eq. (3.4) is bounded 
by C / x / L .  This proves the proposition. 
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4. C O N C L U D I N G  R E M A R K S  

A question arising naturally by Theorem 2 refers to the behavior of 
the fluctuations of ~L([-2rL])/L around its deterministic limit. Due to the 
relation between the interface and the exclusion processes [Eq. (2.7)], this 
can be obtained from the study of the fluctuation density field of the 
exclusion process (~/L.). That is, one considers the field 

YL(~o) = ~ ~__l ~p I-r/L(x) -/~L(r/(x))] (4.1) 

where q~ is a test function and (~/L) is the (stationary) simple exclusion 
appearing in Theorem 1. Using techniques very similar to those of refs. 3 
and 4, it is possible to prove that the distribution of (yL) converges to a 
Gaussian process. The regular part of the covariance of the limiting process 
satisfies the linearized Burgers equation 

1 2 ~Orc(r,r')+ 1 2c(r ,  [1  r l  c(r, ~0 r , r ')+ - 2 p ( r ) ] e +  - 2p(r')] r') 

+ ~ ( r -  r ' ) [ - -  ~p'(r)] = 0 

As a consequence, the fluctuations in the interface, Lm{(L([2rL]) /L  R(r)}, 
converge in law to a Gaussian limit. We do not work out the details, since 
the techniques are simpler than the ones used in refs 3 and 4. 
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